Skip to main content

Baryonyx walkeri skull

Following on from my previous post, here is another one of my theropod skull line drawings. However, this time, it's a little bit more original than the last one. At least a bit more effort went into it.


This is my 'reconstruction' of the Baryonyx walkeri skull and mandible. I based this on photos of various skull elements (Charig & Milner, 1997; Rayfield et al., 2009) and published reconstructions (Sereno et al., 1998; Rauhut, 2003) all scaled appropriately. I also base this on some personal observations of the specimen at the NHM. The arrangement of the postorbital portion of the skull is largely based on Rauhut (2003) (but ultimately on Irritator) but adjusted so that it fits with the braincase and quadrate. So overall, it looks slightly different from Rauhut's (2003) reconstruction.

Comments

Ben Chasteen said…
Science and Technology Content for Raptor's Nest
 
Hi,

My name is Ben Chasteen and I am the Science/Technology editor at Before It's News, a people-powered news site serving over 4 million people a month. We publish over 4,000 user-generated posts each day at BeforeItsNews.com.

I was wondering if you would be interested in receiving a short email of our top 5 Science/Technology stories each week? We have a lot of stories that the mainstream media don't cover. I think you'd find it a great source of unique information. If it's ok, please just email me back with a YES. You have my iron-clad promise that your email address will not be used for any other purpose or be added to any mailing lists.

I would also be your personal contact at Before It's News, should you ever have questions or need anything.

By the way, we also offer free WordPress blog hosting, and we can syndicate your RSS feed, if you're interested. Just let me know.

Thank you,

Ben Chasteen
Science/ Technology Editor
Before It's News
775 East Blithedale Ave. #362
Mill Valley, CA 94941
ben(AT)beforeitsnews(DOT)com
www.beforeitsnews.com

Popular posts from this blog

The difference between Lion and Tiger skulls

A quick divergence from my usual dinosaurs, and I shall talk about big cats today. This is because to my greatest delight, I had discovered today a wonderful book. It is called The Felidæ of Rancho La Brea (Merriam and Stock 1932, Carnegie Institution of Washington publication, no. 422). As the title suggests it goes into details of felids from the Rancho La Brea, in particular Smilodon californicus (probably synonymous with S. fatalis ), but also the American Cave Lion, Panthera atrox . The book is full of detailed descriptions, numerous measurements and beautiful figures. However, what really got me excited was, in their description and comparative anatomy of P. atrox , Merriam and Stock (1932) provide identification criteria for the Lion and Tiger, a translation of the one devised by the French palaeontologist Marcelin Boule in 1906. I have forever been looking for a set of rules for identifying lions and tigers and ultimately had to come up with a set of my own with a lot of help

R for beginners and intermediate users 3: plotting with colours

For my third post on my R tutorials for beginners and intermediate users, I shall finally touch on the subject matter that prompted me to start these tutorials - plotting with group structures in colour. If you are familiar with R, then you may have noticed that assigning group structure is not all that straightforward. You can have a dataset that may have a column specifically for group structure such as this: B0 B1 B2 Family Acrocanthosaurus 0.308 -0.00329 3.28E-05 Allosauroidea Allosaurus 0.302 -0.00285 2.04E-05 Allosauroidea Archaeopteryx 0.142 -0.000871 2.98E-06 Aves Bambiraptor 0.182 -0.00161 1.10E-05 Dromaeosauridae Baryonychid 0.189 -0.00238 2.20E-05 Basal_Tetanurae Carcharodontosaurus 0.369 -0.00502 5.82E-05 Allosauroidea Carnotaurus 0.312 -0.00324 2.94E-05 Neoceratosauria Ceratosaurus 0.377 -0.00522 6.07E-05 Neoceratosauria Citipati 0.278 -0.00119 5.08E-06 Ovir

Hind limb proportions do not support the validity of Nanotyrannus

While it was not the main focus of their paper, Persons and Currie (2016) , in a recent paper in Scientific Reports hinted at the possibility of Nanotyrannus lancensis being a valid taxon distinct from Tyrannosaurus rex , using deviations from a regression model of lower leg length on femur length. Similar to encephalisation quotients , Persons and Currie devised a score (cursorial-limb-proportion; CLP) based on the difference between the observed lower leg length and the predicted lower leg length (from a regression model) expressed as a percentage of the observed value. The idea behind this is pretty simple in that if the observed lower leg length value is higher than that predicted for its size (femur length), then that taxon gets a high CLP score. I don't particularly like this sort of data characterisation (a straightforward regression [albeit with phylogeny, e.g. pGLS] would do the job well), but nonetheless, Persons and Currie found that when applied to Nanotyrannus , it