Skip to main content

DinoBase Launch


So I am managing an online resource called DinoBase. DinoBase was set up by Mike Benton of University of Bristol about 7 years ago, but had recently undergone a complete make-over. While the old DinoBase used to be literaly tens and hundreds of html pages, the new DinoBase features a dynamic system. It's pretty much a relational database, where all the different categories of information (e.g. genus, location, reference, etc.) are stored in separate tables but link to other tables. This enables data entry to become very quick and easy.

As far as the user is concerned, the information on these individual tables are pulled out and compiled onto a single page, just like any webpage, only that that particular page doesn't exist online as an individual page. So type in a dinosaur genus, species, year of description or author, click on the one you want to view and all the relevant information about that dinosaur will be presented in a single page. This, I think is a very cool system.

DinoBase also has features aside from the database itself. The forum is the newest addition to DinoBase which has quickly become promising. This takes up quite a bit of my energy as I always am on the look out for new dinosaurs to post under the 'Recent Discoveries' Forum or dinosaur-related news to introduce.

Just yesterday, we had a media-event (which I'm not really sure how much the media actually picked up on) where we invited children to explore DinoBase, work on some activity sheets downloadable from the site, look at some cool casts of dinosaur bones, or have a chat with Bristol palaeontologists. So that was the 'Official Launch'. Hopefully, we'll get more attention within the next few days...

Comments

Popular posts from this blog

The difference between Lion and Tiger skulls

A quick divergence from my usual dinosaurs, and I shall talk about big cats today. This is because to my greatest delight, I had discovered today a wonderful book. It is called The Felidæ of Rancho La Brea (Merriam and Stock 1932, Carnegie Institution of Washington publication, no. 422). As the title suggests it goes into details of felids from the Rancho La Brea, in particular Smilodon californicus (probably synonymous with S. fatalis ), but also the American Cave Lion, Panthera atrox . The book is full of detailed descriptions, numerous measurements and beautiful figures. However, what really got me excited was, in their description and comparative anatomy of P. atrox , Merriam and Stock (1932) provide identification criteria for the Lion and Tiger, a translation of the one devised by the French palaeontologist Marcelin Boule in 1906. I have forever been looking for a set of rules for identifying lions and tigers and ultimately had to come up with a set of my own with a lot of help

R for beginners and intermediate users 3: plotting with colours

For my third post on my R tutorials for beginners and intermediate users, I shall finally touch on the subject matter that prompted me to start these tutorials - plotting with group structures in colour. If you are familiar with R, then you may have noticed that assigning group structure is not all that straightforward. You can have a dataset that may have a column specifically for group structure such as this: B0 B1 B2 Family Acrocanthosaurus 0.308 -0.00329 3.28E-05 Allosauroidea Allosaurus 0.302 -0.00285 2.04E-05 Allosauroidea Archaeopteryx 0.142 -0.000871 2.98E-06 Aves Bambiraptor 0.182 -0.00161 1.10E-05 Dromaeosauridae Baryonychid 0.189 -0.00238 2.20E-05 Basal_Tetanurae Carcharodontosaurus 0.369 -0.00502 5.82E-05 Allosauroidea Carnotaurus 0.312 -0.00324 2.94E-05 Neoceratosauria Ceratosaurus 0.377 -0.00522 6.07E-05 Neoceratosauria Citipati 0.278 -0.00119 5.08E-06 Ovir

Hind limb proportions do not support the validity of Nanotyrannus

While it was not the main focus of their paper, Persons and Currie (2016) , in a recent paper in Scientific Reports hinted at the possibility of Nanotyrannus lancensis being a valid taxon distinct from Tyrannosaurus rex , using deviations from a regression model of lower leg length on femur length. Similar to encephalisation quotients , Persons and Currie devised a score (cursorial-limb-proportion; CLP) based on the difference between the observed lower leg length and the predicted lower leg length (from a regression model) expressed as a percentage of the observed value. The idea behind this is pretty simple in that if the observed lower leg length value is higher than that predicted for its size (femur length), then that taxon gets a high CLP score. I don't particularly like this sort of data characterisation (a straightforward regression [albeit with phylogeny, e.g. pGLS] would do the job well), but nonetheless, Persons and Currie found that when applied to Nanotyrannus , it